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Abstract - -The kinematical vorticity number (W0 can be a measure of instantaneous non-coaxiality of geologic 
deformations. In order to determine the degree of non-coaxiality from finite deformation structures, an entity W~ 
is defined. W~ = 211/D, where ~ is the amount of rotation of a rigid equant grain embedded in a ductile matrix, 
D = [2(g~ + g~ + g~)]V2and gi are the principal natural strains. For different values of W k the progressive 
variation of 21~ with D is plotted graphically. The gradient of each curve at the origin is equal to W k. The gradient 
of the curves and the values of W~ increase with progressive deformation. If fI and D are independently 
determined from the rock fabric, then the plots of the data on the 2f~/D diagram will enable us to identify a curve 
for a particular W k . The analysis is carried out for plane equivoluminal strain and the method is applicable for the 
case in which the instantaneous character of deformation remains unchanged in progressive deformation. 

INTRODUCTION 

THERE have been some attempts to find a suitable 
measure for the non-coaxiality or the rotationality of 
deformation of rocks with respect to an internal frame of 
reference (Elliott 1972, Means et al. 1980). Such a 
measure is not concerned with the magnitude of non- 
coaxial deformation nor merely with faster or slower 
rates of deformation; any two simple shear deforma- 
tions, with a fast and a slow rate, are equally non-coaxial. 
As Truesdell (1954) pointed out, "the measure of rota- 
tion should indicate not the relative speeds but the 
rotational quality or degree".  This measure then could 
be a basis to separate coaxial and non-coaxial deforma- 
tions as well as to differentiate different classes of non- 
coaxial deformations. 

CLASSIFICATION OF DEFORMATIONS ON THE 
BASIS OF KINEMATICAL VORTICITY NUMBER 

As suggested by Means et al. (1980), for steady pro- 
gressive deformation (i.e. a deformation the instantane- 
ous character of which remains constant during a certain 
interval of time) the kinematical vorticity number of 
Truesdell (1954, p. 107) can be a measure of non- 
coaxiality. The kinematical vorticity number is a dimen- 
sionless invariant which measures the degree of rotation- 
ality of deformation with respect to an internal reference 
frame and is defined by 

w 
Wk = [2(k~ + k~ + ~3)] 1/2' (1) 

where ki are the linear strain rates and w is the magnitude 
of the vorticity vector. 

Since we are interested essentially in the physical 
expression of vorticity, it is worth noting that, in a plane 
perpendicular to the direction of the vorticity vector, the 
magnitude of vorticity is equal to twice the magnitude of 
the local angular velocity, which again is equal to: (1) the 

average of the rates of rotation of material lines of all 
directions in the plane, (2) the average rate of rotation of 
any two material lines perpendicular to each other and 
lying on the plane, (3) the rate of rotation of a rigid 
spherical inclusion and (4) the rate of rotation of a rigid 
ellipsoidal inclusion whose principal axes are aligned 
along the principal axes of the strain rate ellipsoid. For 
our purpose the third item among these is the most 
important; the magnitude of vorticity is twice the rota- 
tion rate of a rigid equant grain, such as a porphyroblast 
of garnet, embedded in a much softer matrix. 

Means et al. (1980) have shown that, depending on the 
value of the kinematical vorticity number,  steady pro- 
gressive deformations may be classified into the follow- 
ing categories: (1) coaxial deformation history with 
Wk = 0, (2) non-pulsating deformation history with 
0 < Wk < 1, (3) progressive simple shear with Wk = 1, 
(4) pulsating deformation history (Ramberg 1975) with 
1 < Wk < o, and (5) rigid rotation with Wk = ~.  These 
types are also characterized respectively by five different 
types of particle paths: rectangular hyperbola, non- 
rectangular hyperbola, straight line, ellipse and circle. 

ESTIMATION OF Wk FROM ROCK FABRIC 

The following discussion is restricted to plane strain; 
the analysis can be easily extended to the cases in which 
the axis of rotation is either a direction of shortening or 
a direction of extension. Consider a plane deformation 
of the type relevant for our purpose: 

u = a u x  + a l z y  (2) 
V = a21x + a22Y , 

where u and v are the velocities along x and y axes, 
respectively. The magnitude of vorticity is then: 
w = a12 - a21 and the kinematical vorticity number is 

a12 --  a21 (3) 
Wk V ~ [ a ~  1 + a22 + ½(al2 + a21)2l 
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For isochoric deformation all + a22 = 0 and 

a12 - a21 
W k = ,k / [ (a l  2 + a21) 2 - -  4a l i a22  ]" 

(4) 

Thus for isochoric deformation: 

a 1 2 a 2 1  - -  alia22 = 0, when Wk = 1, 
a12a21 -- alia22 > 0, when W k < 1, 
a12a21 - alia22 < 0, when Wk > 1. 

Alternatively, we may choose the coordinate axes along 
the principal directions and represent the deformation 
by a superposition of a rigid rotation on a pure strain. 
Then, for plane isochoric deformations, w = kl when 
W k =  1 , t o <  k~whenWk< l a n d t o >  k l w h e n W k >  1. 
Here to is the magnitude of local angular velocity and kl 
is the greatest principal strain rate. 

Instantaneous plane strain may also be represented by 
a combination of pure shear and simple shear (Ramberg 
1975) with the simple shear plane at an angle of 0 to a 
principal axis of pure shear. From (3) the kinematical 
vorticity number will then be 

1 
Wk = [COS 2 28 + ( 2 s  r - sin 28)2] 1/2' (5) 

where Sr is the ratio kx/5' between the rates of pure shear 
and simple shear. If Sr v a 0, we have 

s ~ - s i n 2 0 = 0 ,  w h e n W k =  1, 
s t - - s i n 2 0 > 0 ,  w h e n W k <  1, 
s ~ - s i n 2 8 < 0 ,  w h e n W k >  1. 

Equation (5) shows that there may be an infinite number 
of combinations of sr and 0 for which we obtain an 
identical shape of the particle path. Thus, a straight line 
particle path is obtained for any combination of Sr and 0 
which satisfies the equation s~ - sin 28 = 0. Again, for 
example, each of the combinations (s~ = 0.75, 0 = 45°), 
(st = 0.25, 0 = 45°), (S r = 0.727, 0 = 50 °) and 
(Sr = 0.432, 0 = 30 °) will give the same shape of a 
hyperbolic particle path with Wk = 0.5. In this sense this 
method of combining pure shear and simple shear is 
somewhat arbitrary. Nevertheless, Ramberg's method 
of combining pure strain and simple shear is important 
because it gives us a simple physical representation of a 
complex type of deformation in which the character of 
instantaneous deformation remains unchanged in time. 
Moreover, once we fix the value of Wk, it is immaterial 
what values of s~ and 0 are chosen, as long as the values 
satisfy equation (5). 

The kinematical vorticity number measures the non- 
coaxiality of instantaneous deformation. Even if we 
assume that in an area the nature of instantaneous 
deformation did not change in course of time, the result- 
ing fabric can give us only total strains and total rota- 
tions. The problem is thus to find a method to determine 
the degree of instantaneous non-coaxiality from finite 
deformation structures under the assumption that the 
nature of instantaneous deformation did not change in 
course of time. 

Let us define an entity 

2li  
W~ = [2(~21 + g2 + ~2)]1/2, (6) 

where gi are the natural or logarithmic principal strains 
and II is the amount of rotation of a rigid spherical 
inclusion. If the deformation is a progressive simple 
shear, 1-1 = 3,/2, where 3' is the amount of simple shear. 
If we choose to represent a steady progressive deforma- 
tion by combined pure strain and simple shear, II will 
again be equal to y/2 (Ghosh & Ramberg 1976). II is thus 
measurable wherever the rock fabric enables us to deter- 
mine the amount of rotation of an equant porphyroblast 
or the amount of lateral displacement of beds (from 
displacement of pre-existing transverse veins) or the 
amount of wall-parallel shear strain in ductile shear 
zones (Ramsay 1980). W~ can be determined if the finite 
longitudinal strains can also be measured from natural 
strain gauges. 

Let 

= T.2~11/2 O [2(glz + ~2 + ~3,J • 

Then, for plane isochoric deformation 

D = 2gl. 

(1) For progressive simple shear, with Wk = 1, the 
natural strain along the X-axis is 

gl = sinh-t (3,/2) (7) 

(Jaeger, 1962, p. 69). Thus, for isochoric deformation 

D = 2 sinh- '  (3'/2) (8) 

and 

W ~ =  3' 
2 sinh -1 (3'/2)' 

When 3' is very small W~ ~ 1 and W~ ~ Wk. With 
progressive deformation W~ increases and may deviate 
considerably from W k. 

(2) For hyperbolic particle paths, with W k < 1, it is 
convenient to put 0 = 0 in eqn (5) and obtain the relation 

1 (9) Sr= ~(W~--~ - 1) m. 

For any particular value of Wk, Sr is calculated from eqn 
(9) and D is determined from the relation 

D = 2 In R1, (10) 

where R1, the semi-major axis of the strain ellipse, is 
given by the expression 1[{ }1,2 

R 1 = ~  4 +  4 +  sinh 2(3"st) 

{( 1) (3'Sr)}l'2]. (11) + 4 + ~r sinh2 

Hence 

3' (12) 
W~ - 2 In RI" 
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(3) For elliptical particle paths, with Wk > 1, 0 ~ 0. It 
is convenient to put 0 = 45 ° in eqn (5). Then 

sr = g 1 __ . ( 1 3 )  

For a fixed value of Wk, the shapes of the particle paths 
will be identical for both the values of Sr given by (13). 
With any one of these values R1 can be determined from 
eqns (72) and (83) of Ramberg (1975). With 0 = 45 °, 

1 
R 1 - ( N -  T) 1/2 

where 

7 2 1  ] N =  1 + sin 2(yL)  -~ + ~ -  1 , 

T = sin 2 (2~/L) + sin 4 (~/L)j 1/2, ] 

P = s r -  ½, 
L = ~ / [Sr ( l  -- St) ]. 

D and W~ are then calculated from eqns (10) and (12). 
For different values of Wk, the progressive variation 

of 211 with D is shown in Fig. 1. In this figure the gradient 
of each curve at the origin is equal to Wk. The gradient 
of the curves and the value of W~ increase with progres- 
sive deformation. Hence W~ itself does not characterize 
the nature of instantaneous deformation. The graphs, 
however, show that, for relatively small values of Wk, 
there is very little change in W~ even up to very large 
values of D. Hence when Wk is rather small, say less than 
0.5, W~ ~ Wk. 

For Wk > 1, we enter into the field of pulsating strain 
histories and the 211-D curves become periodic. Only 
one period of each curve is shown in Fig. 1. For such a 
strain history, with an elliptical particle path in a section 
perpendicular to the rotation axis, the strain ellipse 
pulsates; the maximum elongation is reached when 

211= ~r 
~/[1 - (1/Wk)2]" (14) 

At this value of 211, the curve becomes parallel to the 211 
axis. With further deformation the elongation decreases. 
The strain ellipse regains its circular shape when 

2~" 
211 = ~/[1 - (1/Wk)2]" (15) 

This is the period of the 211-D curves for pulsating strain 
histories and is equal to half the period of a particle to 
make a complete traverse along its elliptical path. The 
period of the 211-D curves as given by (15) decreases 
with increasing Wk and reaches the limiting value of 2~- 
when Wk tends to infinity and when the elliptical particle 
path degenerates to a circular path. We can see from Fig. 
1 that for Wk = 5 we are very close to this limiting value. 

To determine the kinematical vorticity number the 
general procedure is to determine independently 11 and 
D from the rock fabric and to plot the data on a 211-D 
diagram (Fig. 1). If the curves are drawn for close-spaced 
values of W k the point will plot on or very close to one of 
these curves. The identification of the curve will enable 

1 2 3 z~ 5 B 7 8 
O 

Fig. 1. The variation of 21) or 3,with D in progressive deformation. The 
gradient of each curve at the origin is equal to Wk. Note that 211 is given 

in radians. 

us to determine the kinematical vorticity number with 
sufficient accuracy. 

This analysis is made under the assumption that the 
value of W k does not change with progressive deforma- 
tion. As yet there are no field criteria to decide whether 
or not Wk remains constant in any given natural deforma- 
tion. Nevertheless the plotting of the deformation data 
on a 211-D diagram can be informative. In an area where 
the intensity of deformation varies spatially, the patterns 
of the 211-D plots may tell us whether Wk was constant 
or not. The patterns of the plots may also indicate 
whether or not the deformation deviates significantly 
from the model of simple shear and whether pulsating 
strain histories, with Wk > 1, are geologically realistic. 
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